
TUGboat, Volume 8 (1987), No. 2

'l&X Does Windows -The Conclusion

Alan Hoenig

In the last issue, readers were invited to think about creating T@ macros to 'Ldo windows"-have TEX
leave rectangular cutouts horizontally centered within paragraphs and in which you can insert artwork, or

whatever. The solution I discuss in this issue differs significantly from the one I had in mind at the time I

threw down the gauntlet last time. The window macros have become leaner and more robust. (I am grateful

to my colleague Mitch Pfeffer who supplied me with one crucial idea, and to Barbara Beeton for a valuable

insight. Barbara also helped keep me honest.) I present the macros below, as well as two extensions. which

allow TEX to set rectangular cutouts which aren't horizontally centered. and which force Q X to set cutouts

of arbitrary shape. I do make several limiting assumptions: the cutout fits entirely within a single paragraph,

and the \baselineskip remains constant within that paragraph. I believe you can modify these macros

with little additional work, however. There is one known bug, which I was unable to fix in time to meet the

submission date. When the ratio of baselineskip to design font size reaches decreases to a certain critical

value, the cutout is not properly formed. You'll be okay if you keep the baselineskip at least 2 points greater

than the design size.

Using the Macros

Here's how to use the macros. First, some anatomy. The several lines of material above the window

we'll call the lintel. The material below it is the sill. and the text to its right and left form its sides. (Of
course. some of these regions may be empty depending on your placement of the window.)

We'll talk about the macro that generates a horizontally-centered window first. Before you invoke the

window-making macro. place the code which reserves the registers that the macros use. These definitions

form figure 1.

\newcount\l \newcount\d \newdimen\lftside \newdimen\rtside \newtoks\a

\newbox\rawtext \newbox\holder \newbox\window \newcount\n

\newbox\finaltext \newbox\aslice \newbox\bslice

\newdimen\topheight

\newdimen\ilg % InterLine Glue

FIGURE 1. The boxes. counts, dimens, and so on you need for the window-making macro.

Next, place the actual macro definitions in your document file. There are a slew of such macros-you'll

need them all. They appear in figure 2.

\def\openwindow\down#l\in#2\for#3\linesi%

% #1 is an integer---no. of lines down from par top

% #2 is a dimension---amount from left where window begins

% #3 is an integer---no. of lines for which window opening

% persists.

\d=#l \1=#3 \If tside=#2 \rtside=\lf t side \a=()

\createparshapespec

\d=#l \1=#3 % reset these
\setbox\rawtext=\vbox\bgroup

\parshape=\n \the\a)

%
\def\endwindowtext(%

\egroup \parshape=O % reset parshape; end \box\rawtext
\computeilg % find ILG using current font.
\setbox\finaltext=\vsplit\rawtext to\d\baselineskip

\topheight=\baselineskip \multiply\topheight by\l

\multiply \topheight by 2

\setbox\holder=\vsplit\rawtext to\topheight

% \holder contains the narrowed text for window sides
\decompose\holder\to\window % slice up \holder
\setbox\finaltext=\vboxC\unvbox\finaltext\vskip\ilg\mvbox\window%

TUGboat, Volume 8 (1987), No. 2 212

ber

\vskip\ilg\unvbox\rawtext)

\box\finaltext) % finito

7 0

\def \decompose#l\to#2{%

\loop\advance\l-1

\setbox\aslice=\vsplit#l to\baselineskip

\setbox\bslice=\vsplit#l to\baselineskip %get 2 struts

\prune\aslice\lftside \prune\bslice\rtside

\setbox#2=\vbox{\unvbox#2\hbox

to\hsize~\box\aslice\hfil\box\bslice}~

\if num\l>O\repeat

3
%
\def\prune#l#2{ % take a \vbox containing a single \hbox,
% \unvbox it, and cancel the \lastskip
% put in a \hbox of width #2
\unvbox#l \setbox#l=\lastbox %\box#l now is an \hbox

\setbox#l=\hbox to#2{\strut\unhbox#l\unskip}

3

%
\def\createparshapespec{%

\n=\l \multiply \n by2 \advance\n by\d \advance\n by1

\loop\a=\expandaf ter{\the\a Opt \hsize}\advance\d-1

\ifnum\d>O\repeat

\loop\a=\expandaf ter{\the\a Opt \If tside Opt \rtside)\advance\l-1

\ifnum\l>O\repeat

\a=\expandafter{\the\a Opt \hsize)

3
%
\def\computeilg{% compute the interline glue

\ilg=\baselineskip

\setboxO=\hbox{ (3 \advance\ilg-\htO \advance\ilg-\dpO
3

FIGURE 2. The window-making macros which generate horizontally centered rectangular windows
in a paragraph of text.

Apart from identifying the window text, there are 3 parameters you need to determine: The num- . -

of lines down for the the top of the paragraph (that is, the thickness of the

lintel), the amount in from the left (the width of the sides), and the number of

lines for which the window persists (the thickness of the sides). If w is the width of the side (the value of

parameter #2 in the openwindow macro), then the width of the window is hsize - 2w. You see in figure 4

the exact way in which I created the window in this paragraph.

\openwindow\down l\in 15pc \for 2\lines

Apart from identifying . . .
. . .window in {\sl this) this paragraph.

\endwindowtext

FIGURE 3. Opening up a window in text.

Horizontally Centered Windows

Here is the basic idea behind these macros. We seek to use the command \parshape to create an

odd-shaped paragraph consisting of a top portion identical to the lintel, a bottom portion identical to the

sill, and a lengthy and narrow middle portion with the width of the side text. Then, take this typeset text,

and slice it like a roast beef. These "slices " will contain lines of text in \vboxes which we rearrange to get

TUGboat, Volume 8 (1987), No. 2 213

the text we want, cutout and all. In figure 4, you see the intermediate position of some text before and after

this rearrangement.

Only a few macros require any special comment. Macro \createparshapespec computes the value n

that the \parshape command looks for. Next, it builds up a token \ a which contains the 2n line lengths

and indentations. (I take all the indentations to be Opt, but varying this can add to your palette of special

effects.) Some of this token manipulation is a tad tricky. You construct tokens by enclosing the token list

in braces, but if you don't prefix this with an \expandafter, l$$ will construct \a out of the component

names. rather than out of their meanings. The last line is necessary because of the way \parshape works.

If the paragraph is sufficiently long, uses the final line length for the remainder of the text. If we set

the final line length to be \hsize. then this is what we need to set the sill text.

Note that these macros use \ s t r u t s to help maintain proper vertical line spacing. If you use type at

other than the usual 10 point design size, make sure to redefine the \ s t r u t to reflect this change.

London. Michaelmas Term lately over, and the Lord Chancellor sitting in Lincoln's Inn Hail. Implacable Novem-

ber weather. As much mud in the streets, as if the waters had but newly retired from the face of the earth, and it

would not be wonderful to meet a Megalosaurus, forty feet long or so, waddling like an elephantine lizard up Holborn

Hill. Smoke lowering down

from chimney-pots, making a

soft black drizzle, with flakes

of soot in it as big as full-

grown snow-flakes-gone into

mourning, one might imag-

ine, for the death of the

sun. Dogs, undistinguishable

in mire. Horses, scarcely better; splashed to their very blinkers. Foot passengers, jostling one another's umbrellas.

in a general infection of ill-temper, and losing their foot-hold at street-corners, where tens of thousands of other foot

passengers have been slipping and sliding since the day broke (if this day ever broke), adding new deposits to the

crust upon crust of mud, sticking at those points tenaciously to the pavement, and accumulating at compound interest.

London. Michaelmas Term lately over, and the Lord Chancellor sitting in Lincoln's Inn Hall. Implacable Novem-

ber weather. As much mud in the streets, as if the waters had but newly retired from the face of the earth, and it

would not be wonderful to meet a Megalosaurus, forty feet long or so, waddling like an elephantine lizard up Holborn

Hill. Smoke lowering down from chimney-pots, making a

soft black drizzle, with flakes of soot in it as big as full-

grown snow-flakes-gone into mourning, one might imag-

ine, for the death of the sun. Dogs: undistinguishable

in mire. Horses: scarcely better: splashed to their very blinkers. Foot passengers, jostling one another's umbrellas,

in a general infection of ill-temper, and losing their foot-hold at street-corners. where tens of thousands of other foot

passengers have been slipping and sliding since the day broke (if this day ever broke), adding new deposits t o the

crust upon crust of mud, sticking at those points tenaciously to the pavement, and accumulating at compound interest.

FIGURE 4. The window macro generates a funny-looking paragraph (top) using the 'parshape'
command, which it then rearranges to form the window (bottom).

The actual "deli slicing" is done by the \decompose macro, and the slicing mechanism is done via the

\ v s p l i t primitive. Decomposition also calls for the \pruneing of each slice-removing the glue T@ places

on the right of a short, \parshape line.

On Beyond Centering: Off-Center Windows

All the hard work in cutting out windows is already present in these macros. It's almost trivial to

generalize to the case where a rectangular window is to be off-center. The only real change is to the

definition of \openwindow to allow for another parameter-the width of the right side of the window. Here,

in figure 5 . is the way I've redefined the beginning of \openwindow.

FIGURE 5. The opening for the openwindow macro to account for windows that can be off-centered
horizontally. Parameter 3 is now t o be the distance from the right margin.

214 TUGboat: Volume 8 (1987), No. 2

On Beyond Rectangles: Arbitrary Shapes

The most interesting part of writing these macros was their extension to windows of arbi-

trary shape. Users specify the "shapespec" for their cutout by creating a list of the right and

left line lengths. each of which is separated by a doable backslash \\: this list is then
T h e area of

passed to the macro as a single param- a c,,,,, ,, a ,,,, eter. Changes to the macros to han-

dle this shape spec are localized to a t~Ope",'Ut;,":a~,,"e,",",";l",r ","ill,
few places. As before, the beginning

\openwindow statement needs modi- g0.3 of whrch one clrcumscrlbes it fying to accept a different parame-
and t h e o t h e r 1s Isopenrnet r tc x l t h

ter list. The \pxshape specifica- ,, I, t h e are of the circle tions are built up in a slightly dif-
1s less t h a n t h a t of anv c i rcurnscr~bed ferent way' and \createparshape-
polygon a n d grea ter t h a n t h a t of an,

spec is itself slightly different. The

most extensive changes are in the l s o p e n m e t r l c polygon ~ n d fur ther of \decompose macro. which uses the
these c ~ r c u m s c r i b e d polggons t h e o n e

\lop macro (of Appendix D in the t h a t has t h e grea ter number of sides has TMb00k) to chop off the individ-

ual line lengths from the shape spec. 4,",e~1~,":~~:: 'c :Eet,","',t","e";","a","da At the risk of appearing repetitious.

all the listings for all the macros in t h e ' w m 1 m e " ~ c ~ o l ~ g o n t h a t has

t h e grea ter number of s ~ d e s 1s

this version of \openwindow appear

in figure 6. The shapespec itself is t h e larger [Gal+- 163b handled as a list, a la the suggestions

of Appendix D. pages 378-380. in The m b o o k . The general shapespec is of the

form \\ll\\rl \\lz\\rz\\. . . \\l,\\r,\\ where there are n lines in the cutout area. Each 1,

should be the length of the left side. and each r, is the length of the right side for the ith line of the cutout.

Note well the double backslash which both begins and ends the shapespec. The shapespec for this paragraph

i s \ \ 168\x \ \ 168\x \ \ 154\x \ \ 154\x \ \ 145\x \ \ 145\x \ \ 138\x \ \ 138\x \ \ 134\x \ \ 134\x
\ \ 132\x \ \ 132\x \ \ 131\x \ \ 131\x \ \ 132\x \ \ 132\x \ \ 134\x \\ 134\x \ \ 138\x \ \ 138\x
\ \ 144\x \ \ 144\x \ \ 154\x \ \ 154\x \ \ 168\x \ \ 168\x \ \ where \x is a special \dimen register

containing the value 1.22pt.

%
% Special registers

%
\newcount\l \newcount\d \newdimen\lftside

\newdimen\rtside \newtoks\a \newtoks\b

\newbox\rawtext \newbox\holder \newbox\window \newcount\n

\newbox\finaltext \newbox\aslice \newbox\bslice

\newdimen\topheight

\newdimen\ilg % InterLine Glue
\newtoks\c

%

%
% Here are the special WINDOW MACROS.

%
\long\def\openwindow\down#l\for#2\linesand#3as~shape~spec{%

% #I is an integer---no. of lines down from par top

% #2 is an integer---no. of lines for which window opening

% #3 is the shapespec token list
\d=#1 \1=#2 \def\b{#3) \def\tail{\hsize 3

\edef \\CO pt3

\createparshapespec

\d=#l \1=#2 % reset these

\setbox\rawtext=\vbox\bgroup

\parshape=\n \the\c \b \tail

3
%
\def\endwindowtext{%

\egroup \parshape=O

% reset parshape; end \box\rawtext

\computeilg % find ILG using current font

TUGboat, Volume 8 (1987), No. 2

\setbox\finaltext=\vsplit\rawtext to\d\baselineskip

\topheight=\baselineskip \multiply\topheight by\l

\multiply \topheight by 2

\setbox\holder=\vsplit\rawtext to\topheight

% \holder contains the narrowed text for window sides
\decompose\holder\to\window % slice up \holder
\~etb~x\finaltext=\vbox(\unvbox\finaltext\vskip\ilg\unvbox\window%

\vskip\ilg\unvbox\rawtext)

\box\finaltext} % finito

%
\def\lop#l\to#2(\expandafter\lopoff#l\lopoff#1#2}

\long\def\lopoff\\#l\\#2\lopoff#3#4C\def#4{#1}\def#3{\\#2~~

%
\def\decompose#l\to#2~%

\loop\advance\l-1

\lop\b\to\lft \lftside=\lft

\lop\b\to\rt \rtside=\rt

\setbox\aslice=\vsplit#1 to\baselineskip

\setbox\bslice=\vsplit#1 to\baselineskip %get 2 struts

\prune\aslice\lftside \prune\bslice\rtside

\setbox#2=\vbox{\unvbox#2\hbox

to\hsize~\box\aslice\hfil\box\bslice))

\ifnum\l>O\repeat

1
%
\def\prune#1#2(% take a \vbox containing a single \hbox,
% \unvbox it, and cancel the \lastskip
% put in a \hbox of width #2
\unvbox#l \setbox#l=\lastbox %\box#l now is an \hbox

\setbox#l=\hbox to#2~\strut\unhbox#l\unskip}

1
%
\def\createparshapespec(%

\n=\l \multiply\n by 2

\advance\n by1 \advance\n by\d

\c=O

\loop\c=\expandafter{\the\c Oin \hsize}\advance\d-1

\ifnum\d>O\repeat

J

%
\def\computeilgC% compute the interline glue

\ilg=\baselineskip

\setboxO=\hbox{O \advance\ilg-\htO \advance\ilg-\dpO

1

FIGURE 6. These are the macros you will need to generate cutouts of arbitrary text within your

document.

A few final comments. Use these macros sparingly: it's difficult and mighty uncomfortable to read across

a large gap in text. If you do use these macros, try not to let the width of the sides get too narrow or you'll

have lots of 'overfull' messages. You may therefore want to up the \tolerance of your document. Also. the

use of these macros may greatly increase the TEX compilation time. This may be especially noticeable on

microcomputers like an IBM PC. Wait a good few minutes before you decide the system has hung and it's

time to re-boot.

