
78 TUGboat, Volume 22 (2001), No. 1/2

Anatomy of a macro

Denis Roegel

Abstract

In this article, we explain in detail a TEX macro for
computing prime numbers. This gives us an oppor-
tunity to illustrate technical aspects often ignored
by TEX beginners.

This article is dedicated to Chrystel Barraband for
whom the first version was written in 1993.

This article is a translation, with corrections, of the article
“Anatomie d’une macro” published in the Cahiers GUTen-
berg, number 31, December 1998, pages 19–27. Reprinted
with permission.

Introduction

A TEX macro can be seen as the definition of a com-
mand by other commands. Both the definition of a
command and the way arguments are passed obey
rules which are both precise and simple, but which
are often overlooked, though indispensable to a good
understanding of TEX.

Moreover, the call of a TEX macro is a very dif-
ferent process from what happens in classical lan-
guages. It is similar to a macro call in the C prepro-
cessor and it is hard to imagine programming with
such a language! A macro call merely entails a re-
placement or a substitution, but it can also call other
macros, including itself, which allows recursion.

Computing prime numbers

We will focus on the computation of prime numbers.
n > 1 is prime if n is divisible only by itself and 1. If



TUGboat, Volume 22 (2001), No. 1/2 79

n is odd, it is sufficient to divide n by 3, 5, 7, . . . , p ≤
b
√

nc. For, if n can be divided by p > b
√

nc, then
n can also be divided by q < b

√
nc. The divisors p

will be tried until p2 > n.

Macros

The following example, from The TEXbook (Knuth,
1984), is of an advanced level but will allow us to
go straight to the heart of the matter. The macro
\primes makes it possible to determine the first
n prime numbers, starting with 2. For instance,
\primes{30} returns the first 30 prime numbers.
Here are all the definitions.1 We will then analyze
them in detail:

\newif\ifprime \newif\ifunknown
\newcount\n \newcount\p
\newcount\d \newcount\a
\def\primes#1{2,~3% assume that #1>2
\n=#1 \advance\n by-2 % n more to go
\p=5 % odd primes starting with p
\loop\ifnum\n>0 \printifprime

\advance\p by2 \repeat}
\def\printp{, % invoked if p is prime
\ifnum\n=1 and~\fi
\number\p \advance\n by -1 }

\def\printifprime{\testprimality
\ifprime\printp\fi}

\def\testprimality{{\d=3 \global\primetrue
\loop\trialdivision

\ifunknown\advance\d by2 \repeat}}
\def\trialdivision{\a=\p \divide\a by\d
\ifnum\a>\d \unknowntrue
\else\unknownfalse\fi
\multiply\a by\d
\ifnum\a=\p \global\primefalse

\unknownfalse\fi}

Declarations

First, we declare two booleans, or more precisely two
tests.

\newif\ifprime

\ifprime is equivalent to \iftrue if “prime”
is true. This boolean will make it possible to see if
a number must be printed; thus, in \printifprime,
the expression \ifprime\printp\fi means that if
\ifprime is evaluated to \iftrue, then \printp
(that is, the macro that will print the number of in-
terest to us, namely \p) will be executed, otherwise
nothing will happen.

\newif\ifunknown

1 The code was slightly reformatted to fit in the columns.

“unknown” will be true if we are not yet sure
whether \p is composed or not. Neither is known.
Initially, “unknown” is thus true and the \ifunknown
test succeeds. If “unknown” is false, we have knowl-
edge about \p’s primality, that is, we know if \p is
prime or not.

Next the code defines a few integer variables
useful in what follows:
• \newcount\n

\n is the number of prime numbers that re-
main to be printed.

• \newcount\p

\p is the current number for which primality
is tested.

• \newcount\d

\d is a variable containing the sequence of
trials of divisors of \p.

• \newcount\a

\a is an auxiliary variable.

Main macro

The main macro is \primes. It takes an argument.
When the macro is defined, this argument has the
name #1. If there were a second argument, it would
be #2, etc. (It is not possible to have — directly —
more than nine arguments; indirectly however, one
can have as many arguments as one wants, including
a variable number, which could for instance be a
function of one of the arguments.)
\def\primes#1{2,~3%
\n=#1 \advance\n by-2 %
\p=5 %
\loop\ifnum\n>0 \printifprime

\advance\p by2 \repeat}

When the \primes macro is called, for instance
with 30, \primes{30} is replaced by the body of
\primes (that is, the group between braces which
follows the list of \primes’ formal arguments), in
which #1 is replaced by the two characters 3 and
0. \primes{30} hence becomes (we have removed
spaces at the beginning of the lines, because they
are ignored by TEX):
2,~3%
\n=30 \advance\n by-2 %
\p=5 %
\loop\ifnum\n>0 \printifprime

\advance\p by2 \repeat

What happens now? We print “2,~3”, that is,
2 followed by a comma, followed by an unbreakable
space (i.e., the line will in no case be split after the
comma); then 30 is assigned to \n. Immediately, 2 is



80 TUGboat, Volume 22 (2001), No. 1/2

subtracted from \n, and \n then contains the num-
ber of primes that remain to be printed. To keep
it simple, we have assumed that at least the three
first primes must be displayed. Therefore, we are
sure that \n is at least equal to 1. This is also why
it was possible to put a comma between 2 and 3,
because we know that 3 is not the last number to be
printed. We want the last number printed to be pre-
ceded by “and”. Hence, when we ask \primes{3},
we want to obtain “2, 3, and 5”. It should also be
noticed that the “%” after “3” is essential to prevent
insertion of a spurious space. “3” will be followed by
a comma when \printp is called. The “%” after the
second and third lines are not really needed since
TEX gobbles all spaces after explicit numbers; these
“%” signs appear only as remnants of comments.

We said that \p is the current number whose
primality must be tested. We must therefore initial-
ize \p to 5, since it is the first odd number after
3 (which we don’t bother to check if it is prime or
not).

The body of \primes{30} ends with a loop:

\loop\ifnum\n>0 \printifprime
\advance\p by2 \repeat

It is a \loop/\repeat loop. In general, these
loops have the form

\loop A text \if... B text \repeat

This loop executes as follows: it starts with
\loop, the A text is executed, then the \if... test.
If this test succeeds, the B text is executed, then
\repeat makes us return to \loop. If the test fails,
the loop is over.

Hence, in the case of \primes{30}, it amounts
to execute

\printifprime\advance\p by2

as long as \n is strictly positive, that is, as long as
prime numbers remain to be printed. In order for
this to produce the expected result, it is of course
necessary to decrement the value of \n. This is
done every time a number is printed with the call to
\printifprime.

As a consequence, if at least one number re-
mains to be printed, \printifprime will be called
and will print \p if \p is prime. Whatever the re-
sult, we pass then to the next odd number with
\advance\p by2.

Printing

The prime numbers are printed with \printp:

\def\printp{, %
\ifnum\n=1 and~\fi
\number\p \advance\n by -1 }

This macro is called only when \p is prime (see its
call in \printifprime). In any case, this macro has
no arguments and gets expanded into
, %
\ifnum\n=1 and~\fi
\number\p \advance\n by -1

that is a comma and a space, followed by “and ”
if \n equals 1 (in the case where the number to be
printed is the last one), followed by \p (the \number
function is analogous to \the and converts a variable
into a sequence of printable characters); finally, \n
is decremented by 1, as announced, and this allows
a normal unfolding of the \loop...\repeat loop in
the \primes macro.

The macro \printifprime is called by \primes.
It calls the function computing the primality of \p
and this determines if \p must be printed or not.
\def\printifprime{\testprimality

\ifprime\printp\fi}

As one can guess, the \testprimality macro
sets the “prime” boolean to “true” or “false,” or
if one prefers, it makes the \ifprime test succeed or
fail.

Primality test

The macro testing \p’s primality uses the classi-
cal algorithm where divisions are tried by numbers
smaller than \p’s square root.
\def\testprimality{{\d=3 \global\primetrue
\loop\trialdivision
\ifunknown\advance\d by2 \repeat}}

This macro is more complex because it involves
an additional “group,” shown here by the braces.
Therefore, when \testprimality is expanded, we
are left with
{\d=3 \global\primetrue
\loop\trialdivision
\ifunknown\advance\d by2 \repeat}

meaning that what happens between the braces will
be — when not otherwise specified— local to that
group. This was not the case in the expansions seen
previously.

Let us first ignore the group. What are we do-
ing? 3 is first assigned to \d where \d is the divisor
being tested. We will test 3, 5, 7, etc., in succes-
sion, and this will go on as long as it is not known
for certain whether \p is prime or not. As soon as
we know if \p is prime or composed, the “unknown”
boolean will become false and the \ifunknown test
will fail.

Now, let us look at this again: we start with
\d=3; the default is to consider \p prime, hence the



TUGboat, Volume 22 (2001), No. 1/2 81

“true” value is given to the “prime” boolean. This
is normally done with
\primetrue

but in our case, it would not be sufficient. Indeed,
at the end of
{\d=3 \primetrue
\loop\trialdivision
\ifunknown\advance\d by2 \repeat}

all variables take again their former value, because
the assignments are local to the group. But the
“prime” boolean is used when the \ifprime... test
is being done in \printifprime, which is called
after \testprimality. The group must therefore
be transcended and the assignment is coerced to be
global. This is obtained with
\global\primetrue

The remainder is then obvious: an attempt is
made to divide \p by \d, and this is the purpose
of \trialdivision. If nothing more has been dis-
covered, that is, if “unknown” is still “true”, the
value of the trial divisor is set to the next value
with \advance\d by2. Sooner or later this process
stops, as shown by the \trialdivision definition.

The additional group in \testprimality can
now be explained. If the group is not introduced,
the expansion of \primes{30} leads to
...
\loop\ifnum\n>0 \printifprime
\advance\p by2 \repeat

Plain TEX defines \loop as follows:
\def\loop#1\repeat{\def\body{#1}\iterate}
\def\iterate{\body\let\next\iterate
\else\let\next\relax\fi \next}

Therefore, the initial text is expanded into
\def\body{\ifnum\n>0 \printifprime
\advance\p by2 }\iterate

Hence, the \loop. . . \repeat construct becomes
\ifnum\n>0 \printifprime\advance\p by2

\let\next\iterate
\else \let\next\relax\fi \next

If \n > 0, this leads to
\printifprime ...
\let\next\iterate \next

and hence to
\testprimality ...
\let\next\iterate \next

and to
... \loop\trialdivision

\ifunknown\advance\d by2 \repeat ...
\let\next\iterate \next

Now, \iterate will call \body, but the \body defini-
tion called will be the one defined by the second (in-
ner) \loop, and chaos will follow! This explain why
a group has been introduced. The group keeps the
inner \body definition away from the outer \loop
construct, hence each \iterate call produces the
appropriate result.

Division trials

The last macro is where the actual division of \p by
\d is made. An auxiliary variable \a is used.

\def\trialdivision{\a=\p \divide\a by\d
\ifnum\a>\d \unknowntrue
\else\unknownfalse\fi
\multiply\a by\d
\ifnum\a=\p \global\primefalse

\unknownfalse\fi}

\p is copied into \a, then \a is divided by \d.

This puts into \a the integer part of \p\d . Two cases
must then be considered:

1. if \a > \d, that is, if \d is smaller than the
square root of \p, we are still in unknown terri-
tory. \d may be a divisor of \p, or there might
be another divisor of \p larger than \d and
smaller than the square root of \p root. The
“unknown” boolean is therefore set to “true”
with \unknowntrue.

2. if \a ≤ \d, we assume that we know, or at least,
that we will know momentarily. We write there-
fore \unknownfalse.

In order to be sure, we must check if there is a
remainder to \p’s division by \d, or rather to \a’s
division by \d: \a is therefore multiplied by \d:

\multiply\a by\d
\ifnum\a=\p \global\primefalse

\unknownfalse\fi

If \p is found again, it means that \d is one
of \p’s divisors. In that case, \p is of course not
prime and the “prime” boolean is set to false with
\primefalse. Since \trialdivision is actually
located in the group surrounding the body of the
\testprimality macro, and since the “prime” is
needed outside \testprimality, the group must
once again be transcended and the “prime” assign-
ment must be forced to be global. Hence:

\global\primefalse

Finally, in the case where \d divides \p, we set
\unknownfalse, which has as sole effect of causing
the loop to end:

\loop\trialdivision
\ifunknown\advance\d by2 \repeat



82 TUGboat, Volume 22 (2001), No. 1/2

that is, no other divisor is tested. One can observe
that there is no \global in front of \unknownfalse,
because \ifunknown is used within and not outside
the group.

If \p is not found again after the multiplication,
it means that \d is not a divisor of \p. At that time,
we had
• either \a ≤ \d, and therefore \a < \d (other-

wise \p would have been found after the multi-
plication), and hence \unknownfalse, therefore
the loop

\loop\trialdivision
\ifunknown\advance\d by2 \repeat

stops and since this happens in the context

\d=3 \global\primetrue
\loop\trialdivision
\ifunknown\advance\d by2 \repeat

where “prime” had been set to true, we con-
clude naturally that, no divisor having been
found up to \p’s square root, \p is prime.

Therefore, at the end of \testprimality’s
call, \ifprime succeeds and \p is printed.

• or \a > \d: in that case, we know nothing more,
\unknowntrue, and the next divisor must be
tried.

Conclusion

This ends the explanation of these macros, apart
from a few subtleties which were not mentioned.

It takes TEX a lot of time to do complex op-
erations such as the ones described. In order to
execute\primes{30}, TEX spends more time than it
needs on average to typeset a whole page with plain
TEX. \trialdivision is expanded 132 times. With
\primes{1000} there are 41331 expansions and with
\primes{10000} there are 1441624 expansions.

It should be stressed that the previous macros
are given in The TEXbook (Knuth, 1984, pp. 218–
219), with the following lines as the only explana-
tion:

The computation is fairly straightforward,
except that it involves a loop inside a loop;
therefore \testprimality introduces an ex-
tra set of braces, to keep the inner loop con-
trol from interfering with the outer loop. The
braces make it necessary to say ‘\global’
when \ifprime is being set true or false. TEX
spent more time constructing that sentence
than it usually spends on an entire page; the
\trialdivision macro was expanded 132
times.
TEX’s programming language is quite peculiar

and we gave only a glimpse of it. The interested
reader should dive into TEX’s “bible”, namely Don-
ald Knuth’s TEXbook (Knuth, 1984).

Acknowledgments

I would like to thank an anonymous referee for notic-
ing an important error in the French version of the
article.

References

Knuth, Donald E. The TEXbook. Addison-Wesley,
Reading, MA, USA, 1984.

� Denis Roegel
LORIA
Campus scientifique
BP 239
54506 Vandœuvre-lès-Nancy cedex
FRANCE
roegel@loria.fr

http://www.loria.fr/~roegel/


