
Geometric Diversions with TEX, METAFONT and METAPOST

Karel Horák
Mathematical Institute of the Academy of Sciences
Žitná 25, 115 67 Praha 1,
Czech Republic
horakk@math.cas.cz

http://www.math.cas.cz

Abstract

Recently METAPOST has been preferred to METAFONT, although this need not be the general
case. Each can be used, with its own specific advantages, and readable source text can be written
for both great compilers! We provide some advice on how to do it in such a way that practically no
change in incorporating corresponding figures into a document is necessary. This includes typeset-
ting labels using Alan Hoenig’s labtex macros, which can be done independently even if graphics
produced byMETAPOST instead of METAFONT are then used in the document. Some examples
of geometric diversions are given.

Résumé

Ce dernier temps METAPOST est de plus en plus utilisé, vis-à-vis de METAFONT, ce qui n’est
pas indispensable. En effet, on peut utiliser chacun des deux dans des cas spécifiques et profiter de
leurs avantages respectifs ; d’autre part, on peut écrire du code lisible par les deux compilateurs !
Nous proposons un certain nombre de conseils pour ce faire, de manière à ne pas changer la manière
dont une figure est insérée dans un document. Cela comprend également la composition de légendes
aux figures en utilisant les macros labtex d’Alan Hoenig, ce qui peut être fait indépendamment du
fait si les graphiques ont été produits par METAPOST au lieu de METAFONT. Nous proposons
également un certain nombre de divertissements géométriques.

Introduction

There are many ways to assign labels to selected points
of a picture. One easy example is given in the TEXbook
(p. 389), which introduces the macro \point. Using
variable \unit (or possibly \xunit and \yunit, why
not?) one can label any inserted graphics and change the
position of its labels dynamically, should the picture be
rescaled, by changing \unit. But if we are concerned
with pictures prepared by METAFONT or METAPOST,
there are more convenient possibilities as well.

A better way is to use communication between
METAFONT and TEX via a tfm file. There are two ba-
sic possibilities on how to store coordinates of selected
points: via fontdimens or via kerning. Both of these ideas
belong, as far as I know, to Alan Hoenig (see [2,3]).

The first way has one important drawback: the
number of fontdimens is very limited. The other way
(labtex.mf and labtex.tex macros) gives the user
much more freedom to store coordinates. This very
short macro file uses for that task kerning with the first
three characters (it can be easily modified to use more if
necessary, as METAFONT’s limit on the number of kern-
ing pairs is now more than 32,000).

Inspired by [3], Alan Jeffrey proposed in [5] another

way to manipulate labels of METAFONT diagrams. Be-
cause of deficiencies in the file-handling capabilities of
METAFONT he used the log file for communicating be-
tween METAFONT and TEX, extracting the desired in-
formation with the grep utility.

Clearly, METAPOST can solve all these problems
easily and smoothly, as it has own labelling mechanism
which uses TEX for typesetting labels, which are then
converted into low-level METAPOST commands. Does
this mean that we should rewrite all our old programs
written for METAFONT, as we did when we changed
from the old METAFONT 78 to the new one? Not at
all! John Hobby, author of METAPOST, has arranged
for all METAFONT sources (with some exceptions) to
compile with METAPOST using a special format file
mfplain.mp.

While there are many good reasons to preferMETA-
POST to METAFONT (use of colour, no problems with
higher resolution, etc.), I am still preparing many black
and white documents with geometric pictures printed
in normal resolution and I am accustomed to use both:
METAFONT, when proofing, and only then (if necessary)
METAPOST for the final compilation. For such a rea-
son I rather often prefer to use labtex (after ten years of

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 449



Karel Horák

excellent experience) for labels as it works in both cases
without any substantial change. The aim of this short
contribution is to stress that labtex can also be used with
METAPOST without any serious problem.

It could be done directly: METAPOST stores the
metric information into a tfm file exactly as METAFONT

does; the only drawback is then the great number of triv-
ial files generated. So it seems better to produce pictures
by METAPOST without labtex, while the appropriate
metric file with related kerning information given by lab-
tex’s pointing commands will be regenerated by META-
FONT without any garbage later. As we want to use the
same source file twice, we presuppose using mfplain.mp
as the format. It can be done by the following fork (test-
ing if colour red is known):

mode_setup;

u#:=1mm#;

define_pixels(u);

if known red:

% labtex information is not used

def labtex (text t)= enddef;

warningcheck:=0;

else:

input labtex

fi

A similar fork can be used for any case where
METAFONT and METAPOST behave differently (cull-
ing of some region could be alternatively changed to clip-
ping, etc.).

The pros and the cons

One big advantage was mentioned before: one can easily
change old sources from bitmap to outline without too
much work.

For me, another advantage of this attempt is that
I can easily preview typeset pictures (without possible
colours) with the emTEX previewer, while previewing
PostScript with Ghostscript is substantially slower (even
if much faster now than some years ago).

Another advantage of this concept is that one can
easily combine METAPOST output with other eps pic-
tures, a problem that was solved only by some special
tricks thanks to Bogusław Jackowski and his colleagues.

One possible disadvantage (mentioned in [5]) is that
this concept does not involve communication from TEX
to METAFONT (e.g. size of the label to leave some void
space in colored region). Such a feature could of course
be added using ideas from [2], if one wished to typeset
many more such labels.

One of the advantages of METAPOST’s own la-
belling mechanism is that one can easily transform the la-
bels (rotate, scale, skew...), use color, erase appropriate
surrounding space of label, etc. These of course could

be done with labtex using TEX \special commands and
PostScript macros (PSTricks can do all of this).

Using labtex with METAPOST

What is the main difference between a character gener-
ated by METAFONT and the corresponding PostScript
picture produced by METAPOST(&mfplain)? Their di-
mensions are known to TEX! Dimensions (width, height,
and depth of each character are given by parameters of
beginchar in the METAFONT source file and one must
take some care to guess these dimensions as best as possi-
ble, or even better to construct the picture depending on
them (i.e. using variables w, h, d for defining basic points
of any figure). On the other hand, dimensions in eps files
output by METAPOST are read by TEX from the cor-
responding bounding box, which is computed by META-
POST according to the real dimensions of the resulting
picture. For alternative use in TEX it is in most cases suf-
ficient to correctly position the reference point of the pic-
ture. So we must first change the lower left corner of the
bounding box to be at the origin.

The labtex macros are designed to typeset the pic-
ture first, then labels. This is even more important for
the PostScript variant of the \fig macro, as PostScript
draws the picture sequentially layer after layer, so la-
bels typeset in advance could disappear completely under
some coloured part of the picture.

The following adaptation of Hoenig’s \fig macro
can do the right job, changing the reference point of the
resulting picture.

\input labtex

\input epsf

\newcount\epsfurX \newcount\epsfurY

\def\MPfig#1{% usage:

%%%%\MPfig{figure number}{labels}

%%%%\endfig

\figcount=#1 \catcode‘\^^M=5

%%%%to be sure in obeylines

\setbox\figbox=

\hbox{\labtex\char\figcount }%

\global\figwd=\wd\figbox

\global\fight=\ht\figbox

\global\figdp=\dp\figbox

\setbox\figbox=

\hbox{\epsffile{\fontname\labtex.#1}}%

\epsfurX\epsfurx\epsfurY\epsfury

\setbox\figbox=

\hbox{\epsffile[0 0 {\the\epsfurX} %

{\the\epsfurY}]{\fontname\labtex.#1}}%

\zerobox\figbox%

\hbox\bgroup\box\figbox

%%%%% now add \point’ing commands

%%%%% and labels

\vrule width0pt height\fight depth\figdp}

\def\zerobox #1{\ht#1=0pt \dp#1=0pt \wd#1=0pt }

450 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003



Geometric Diversions with TEX, METAFONT and METAPOST

Of course, one should never forget to compile the
source in the right order! Using labtex, the order of
labels is also important, as we have mentioned earlier
(i.e. we must typeset labels in the same order as the lab-
tex macro stores coordinates of their anchor points).

Once the picture is ready, one can easily correct
the labels only in the TEX file without recompiling the
METAFONT source.

Examples and comments

Next you can see two identical trivial pictures of a square
with its vertices labeled by 1, 2, 3, and 4. The first is
typeset with a bitmap font, the other with an eps file pro-
duced with METAPOST from the same source.

�
1 2

34

1 2

34

Another example shows an illustration from [6] us-
ing two instances of a scanned picture converted to eps:

X X ′

L = L′

S

o

When testing figures using Alan’s original macros, I
rediscovered (after some delay, of course) a somewhat
strange feature: figures must be numbered sequentially
starting from zero, which actually I am not accustomed
to. A small change in the original code removes this ne-
cessity. Instead of

if not known chars[i]:

beginchar(i,0,0,0); endchar;

if not known fpf: fpf=i; fi

fi

one can find the number of the last known figure without
any such assumption:

if not known chars[i]:

beginchar(i,0,0,0); endchar;

else: fpf:=i; % last known figure

fi

On the other hand, if I am preparing pictures for
anybody who or does not use TEX at all, or does not want
to manipulate METAFONT sources, the most secure way
is to prepare pictures, typeset them and then convert to
EPS using another useful utility of Gdańsk provenance
(the ps_conv package of P. Pianowski & B. Jackowski).

To my own sorrow I have not succeeded in learning
more about ConTEXt and its way of manipulatingMETA-
POST graphics. Then I could probably forget about
PSTricks and others. . . Of course it surely cannot hap-
pen without making progress to use a real operating sys-
tem (here I do not think of Windows of any kind). I am
going to be twice as old as TEX is, perhaps this is the right
time to make substantial progress. . .

TEX andMETAFONT are genuinely designed to co-
operate and there are many ways to enjoy it.

The last example (on the following page) is known
to all my friends who, for the last six years, have received
every New Year a calendar to be cut out and glued to-
gether to form a polytope.

References

[1] John D. Hobby: A User’s Manual for META-
POST. http://ctan.org/tex-archive/

graphics/metapost.
[2] Alan Hoenig: When TEX and METAFONT work

together. Proceedings of the 7th European TEX
Conference, Prague, 1992.

[3] Alan Hoenig: Labelling figures in TEX docu-
ments. TUGboat 12(1), 1991, pp. 125–128.

[4] Alan Hoenig: TEX Unbound. LATEX & TEX
Strategies for Fonts, Graphics, & More. Oxford
University Press, Oxford-New York, 1998.

[5] Alan Jeffrey: Labelled diagrams in METAFONT.
TUGboat 12(2), 1991, pp. 227–229.

[6] František Kuřina: 10 geometrických transformací
(10 geometric transformations; in Czech). Pro-
metheus, Praha, 2002.

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 451



Karel Horák

452 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003


