
Comparison of OpTEX with other formats:
LATEX and ConTEXt

Petr Oľsák

Introduction

OpTEX [1] was introduced in an article [2] in the pre-
vious issue of TUGboat. It is a macro package that
creates a format for LuaTEX. Its features are com-
parable with other formats like LATEX or ConTEXt.
One may ask why use a new format, particularly
when it requires a different markup syntax? I try to
answer this question here. I present a comparison
among the LATEX, ConTEXt, and OpTEX formats,
from various points of view.

Basic concept

LATEX. It was created in the 1980s as a real format,
i.e. the implementation of visual and typographical
aspects of the TEX output. Moreover, it provides
a markup language given in [3] which was intended
for the authors of (typical) scientific publications.
Authors are instructed: use this markup and don’t
worry about the typographical look of the output.
This look is implemented for you in the format.

A very important feature of LATEX is its mod-
ularity. There are macro packages that solve par-
ticular problems with the typesetting of documents
which can be loaded when the document is pro-
cessed. This concept has grown to a size which no-
body could have expected in the 1980s. Now, some
packages give authors an interface to set various ty-
pographical parameters of the typesetting too. So,
there is no single format of the output. But the pos-
sibility of controlling the visual aspect of the output
has no uniform strategy. It is spread among various
packages created by various authors.

LATEX introduces a new level of terminology,
syntax, etc., over the TEX primitive level. We are
not using control sequences (meaning macros, reg-
isters, . . .) in LATEX. There are commands and
newly introduced functions and variables here. But
the interpreter is TEX, so it reports (for example)
the message “undefined control sequence” and
the LATEX users may not know this term and they
may not understand such messages. For example,
a typical TEX message “missing \cr inserted” is
not understandable for average LATEX users because
they are using \\, not \cr.

The different LATEX syntax can be shown in the
following example. The setting to the register which

44 TUGboat, Volume 42 (2021), No. 1

controls the width of the typesetting area is docu-
mented as

\setlength{\textwidth}{13cm}

which would be \hsize=13cm at the TEX primitive
level. The primitive level is allowed in LATEX docu-
ments too, so we often see a mix of primitive syntax
and LATEX syntax in real-world documents.

In the last ten years, a new language level over
the primitive level has been developed, used, and
propagated by the LATEX team: expl3. It is intended
to be used by macro/package writers for LATEX. It
is even further from the TEX primitive level. For
example:

\tl_set:Nn \l_pkgname_hello_tl { Hello! }

is comparable to \def\hello{Hello!} from the
primitive point of view. Very special naming con-
ventions must be used here. And different termi-
nology is used: the \l_pkgname_hello_tl is not a
macro without parameters, but rather a variable.
The \tl_set:Nn is not a macro that expands to the
\def primitive, but rather a function.

ConTEXt. It was created and is still developed by
Hans Hagen (and colleagues). The first released ver-
sion was in 1994 (in Dutch) and the ConTEXt name
was given to the package in 1996. Now, we have a
development version ‘ConTEXt lmtx’ based on the
LuaMetaTEX engine (not included in TEX Live) and
the stable ‘ConTEXt mkIV’ based on the LuaTEX
engine. When I use the word ConTEXt in this ar-
ticle, I mean the stable ConTEXt, because I don’t
have experience with the development version.

ConTEXt is not only a format, it is a tool that
enables one to set the typesetting parameters con-
sistently and process the document. All features
used in typical present-day documents are supported
in one place without the need to load external and
third-party packages.

The settings of the typesetting parameters are
done with \setup... commands in key-value syn-
tax. So, new syntax over primitive TEX syntax is
created here. And the distance from this level of syn-
tax to the primitive level seems to be quite big. For
example, the primitive \hsize is set when a param-
eter width in a special context is used in ConTEXt.

ConTEXt is closely associated with MetaPost
for creating vector graphics which can be pro-
grammed and which “cooperate” with typesetting
material. LATEX and OpTEX more commonly use
TikZ for this, although all the formats support both
graphics packages, among others.

doi.org/10.47397/tb/42-1/tb130olsak-fmtcmp

Petr Oľsák

OpTEX. It was released in 2020 and the first stable
version dates from February 2021. It is the successor
of the OPmac macros [4, 5] specially designed as a
format for the LuaTEX engine.

OpTEX is similar to plain TEX but provides
myriad additional features needed when preparing
typical documents in PDF format. The list of fea-
tures is presented in the next section.

OpTEX does not try to define a new level of lan-
guage over the primitive level of TEX. It is intended
that if something is not supported in OpTEX macros
then the user works at the TEX primitive level (or
plain TEX or OpTEX basic macro API). For exam-
ple, when you want to set the width of the typeset-
ting area, use simply \hsize=13cm.

The macros are straightforward, they solve only
what is explicitly needed. They do not scan nor
manipulate with lots of parameters for setting ty-
pography. OpTEX generates a “default typography”
if nothing more is done. The main concept is: if
you want different typography or different behav-
ior, then copy appropriate macros from the OpTEX
kernel and make changes to them in your macro
file. For example, suppose you want to give a dif-
ferent look to section titles. Then copy the macro
_printsec from OpTEX and modify it. You can
see that the macro uses primitive commands for
typesetting: \hbox, \vbox, \kern, \vskip, \hskip,
\penalty, etc. You can use this box-penalty-glue
concept directly without any inserted inter-layer of
language. This is very natural in TEX and you can
use the full power of TEX.

We can summarize the basic concept of OpTEX
in two sentences: (1) We can return to the original
TEX principles. (2) Simplicity is power.

Kernel versus packages

LATEX. The features implemented directly in the
LATEX kernel (i.e. in the .fmt file) correspond to
the time of LATEX’s origin. There is no color sup-
port, no support for graphics insertions, no hyper-
link support, no Unicode font support, etc. All these
additional features are solved using external pack-
ages. So, document preambles contain plenty of
\usepackage commands to load additional macros.
Without them, you cannot solve typical problems
when processing today’s documents.

ConTEXt. It has an almost monolithic kernel that
implements all necessary features. There is a possi-
bility of “modules” in ConTEXt (something compa-
rable to LATEX packages) but they are not typically
used because virtually all features are present in the
kernel.

TUGboat, Volume 42 (2021), No. 1 45

OpTEX. The kernel implements:

• all macros from plain TEX,

• font selection system for Unicode fonts,

• Unicode math,

• color support including color mixing,

• graphic insertions,

• creating simple graphic elements,

• typesetting at absolute or relative positions,

• external and internal references and hyperlinks,

• automatic generation of a table of contents,

• generation of \cite references from .bib files,

• creating alphabetically sorted indexes,

• hyphenation for all available languages,

• switching between language-dependent phrases,

• footnotes and marginal notes,

• verbatim listings including syntax highlighting,

• PDF outlines in Unicode,

• creating tables with a new \table macro,

• creating slides for presentations,

• simple predefined styles “letter” and “report”,

• comfortable setting of page layout,

• printing “lorem ipsum dolor sit”,

• simple API for macro writers,

• loops and key-value syntax for macro writers,

• namespaces for users and macro writers.

Many other features can be implemented in a
small number of macro lines. They are listed in
the OpTEX tricks web page [6]. Other such fea-
tures will be added here if a user asks me to solve a
new problem. A user can copy the macro lines from
this web page to his/her macro file and (possibly)
modify them and use them. Almost every feature
listed here is typically comparable with using some
LATEX package, but is solved with more straightfor-
ward macros. For example, the feature comparable
with the import package is implemented by three
lines of macro code in OpTEX trick 0035. The LATEX
package import itself has 120 lines of macro code.

Some features take more than a few lines of
code. OpTEX supports loading macro packages too,
with a \load macro. For example, there are pack-
ages:

• qrcode calculates QR codes and prints them,
• vlna handles non-breakable spaces after Czech/

Slovak prepositions and other similar typo-
graphical features, using the luavlna package

• emoji enables printing of a large number of col-
orized emoticons from the special Unicode font.

Comparison of OpTEX with other formats: LATEX and ConTEXt

Documentation

LATEX. The LATEX project page [7] lists 8 files as
“general documentation” with 160 pages in total,
but this is not all. The mentioned documentation
describes LATEX kernel features. But users need to
use dozens of packages when an average document
is prepared. Each package has its documentation.
This represents hundreds or thousands of additional
documentation pages from various authors. The
documentation is of different ages in different styles.
It is difficult to recognize what is relevant and what
is obsolete. There exists a book [8] that summarizes
features of LATEX and of all typically used LATEX
packages but not every LATEX user has access to this
book. And features of recent versions of packages
may differ from those described in this book.

There is the LATEX doc system: the macro pro-
grammer can write code and technical comments to-
gether. You need to pre-process these sources to
get macro files usable when the format is generated
or documents are processed. This system is widely
used by LATEX package programmers.

ConTEXt. There are about 180 PDF files with
various ConTEXt documentation. It is not within
the power of the average user to know such a huge
amount of information and be able to select the
most important parts when starting with ConTEXt.
On the other hand, this illustrates that ConTEXt
covers a very large area of computer typesetting.

OpTEX. The main OpTEX manual [9] is divided
into two parts: user and technical documentation.
The first part has only 22 pages. There is a summary
of OpTEX markup at page 26. You can click on each
control sequence listed here and the relevant part of
user documentation is shown. You can click again on
a control sequence here and your PDF viewer jumps
to the second part with technical documentation and
with a detailed technical description of the macro
and with the macro source printed there.

The manual is created using OpTEX, of course.
When the technical part of the documentation is
processed, the actual OpTEX files with the macro
sources and with detailed comments are read. It
is similar to literate programming where technical
notes and code sources are together in a common
file. You don’t have to pre-process this file: the
files are ready to be read when OpTEX format is
generated and when the documentation is prepared.

Of course, if the user wants information beyond
document markup, then he or she must know the ba-
sics of TEX itself and plain TEX. This information is

46 TUGboat, Volume 42 (2021), No. 1

summarized in document [10] in 26 pages. More in-
formation about TEX math typesetting and Unicode
math is summarized in document [11] in 30 pages.

The three documents mentioned above [9, 10,
11] are sufficient to acquire all knowledge about
OpTEX and TEX. They are all that you need to
know when working with OpTEX documents. Of
course, you can get more information about the
TEX engine used by OpTEX: [12, 13, 14]. No other
documents are needed.

External programs

LATEX. When creating the reference list of \cited
records from a .bib file, LATEX needs an external
program (ancient BibTEX or newer Biber). Users
have to run this sequence: latex, biber, latex,
latex to get the correct reference list and \cite

numbers.
When creating an index, the external program

Makeindex or Xindy is used. The user must not for-
get to run makeindex followed by latex after final
corrections (just before sending to print) are done.

When printing a code listing with syntax high-
lighting, some LATEX packages use another external
program, such as a python script.

OpTEX. We don’t have to use any external pro-
grams when creating bibliography references, sort-
ing an index, or printing code listings with syntax
highlighting. All these tasks are done at the TEX
macro level.

OpTEX reads the .bib file directly and creates
the appropriate reference list. A bibliography style
(a simple macro file) is used to set the rules for print-
ing and sorting records. If all \cite commands are
before the reference list generated by \usebib, then
you need to run OpTEX only two times: the first
run accumulates all labels used in \cite commands,
and the records with these labels are read from the
.bib file. The reference list is created and labels are
connected to the generated numbers and saved to a
.ref file. The second run uses these label-number
pairs to print the numbers at the places where \cite
commands are used.

Index sorting is done by a merge sort algorithm
which is very efficient in the TEX macro expansion
language. The special two-pass algorithm is used
for similar phrases, which is configurable for almost
all languages. The sorting rules are applied by the
currently selected language.

The syntax highlighting of code listings is done
at the TEX macro level. It is configured in macro
files hisyntax-c, hisyntax-html, etc.

Petr Oľsák

Font selection system

LATEX. In the 1990s, the “New font selection
scheme” (NFSS) was designed, along with the
LATEX2ε release. The system allows the selection of
family, weight, shape, size, and encoding of the font
independently. It was designed for old fonts with a
maximum of 256 characters in the font. The NFSS

creates a new layer over the \font primitive. Spe-
cial internal names for font families were used and
declared in font definition files (.fd). Each newly
installed font was typically converted to various
8-bit encodings. The virtual fonts technique was
frequently used. This required a high level of un-
derstanding fonts in TEX, making font installation
almost impossible for average users.

When Unicode engines were released then a new
fontspec package for selecting Unicode fonts was
designed. It follows the principles given by NFSS but
adds new features to support Unicode text fonts.

OpTEX. The font selection system respects the ba-
sic plain TEX principle: you can select font variants
typically by \rm, \it, \bf and \bi selectors when
a font family is loaded by \fontfam. The variant
is selected with respect to the current “font con-
text” given by the current setting of font size and
more features given by “font modifiers”. The set
of font modifiers (for example \cond, \caps, \sans,
\bolder) depends on features provided by the se-
lected font family. Users can combine the font mod-
ifiers arbitrarily: the appropriate font is selected if
the font family provides it. The font families includ-
ing their modifiers are implemented in “font files”.
The log file shows the available font modifiers of the
selected font family. Users can create a font catalog
with simply \fontfam[catalog]\bye. All families
registered in font files are printed in this catalog;
see [15]. You can see all available families, modi-
fiers, and variants here. Font samples for each such
combination are shown.

Unicode fonts are preferred in OpTEX. An ap-
propriate Unicode math font is loaded automatically
too when \fontfam is used. The special font mod-
ifier \setff{...} sets an arbitrary OpenType font
feature if it is supported by the font.

Of course, OpTEX supports usage of the \font

primitive and allows you to simply incorporate the
font selector (declared by \font) into your macros
to enable scaling this font by the size context used
in the document. You need not declare a \font for
the same font repeatedly for all necessary sizes.

TUGboat, Volume 42 (2021), No. 1 47

Fragile commands in titles

LATEX. LATEX users know the term “fragile com-
mand” well. A macro used in the title of a section
or chapter can be broken when it is written to in-
ternal files used for generating the table of contents.
It has been over 20 years that (ε-)TEX has provided
the \detokenize and \scantokens primitives but
LATEX users are still fighting with fragile commands,
solving the problem with methods like using the
\protect macro or \DeclareRobustCommand which
adds a mysterious space to the end of the control
sequence name, making tracing more difficult.

OpTEX. There are no “fragile macros”. OpTEX
reads the titles for chapters and sections in verbatim
mode and re-tokenizes them when they are actually
used for printing. Moreover, the verbatim construc-
tions work in titles too:

\sec Title with ‘\this{‘ matter

The in-line verbatim is surrounded by ‘...‘ here.
As shown, unbalanced braces {} can be in the verba-
tim text. And this verbatim text is correctly printed
in the table of contents, headlines, and PDF outlines.
This is difficult in LATEX because the syntax for sec-
tion parameters is the text surrounded by balanced
braces {}. The title parameter in OpTEX is delim-
ited by the end of the line.

ConTEXt. The title parameter is surrounded by
braces {} similarly as in LATEX, so the example
above with \this{ cannot work as-is in ConTEXt.

Markup language

LATEX. Almost all user-level LATEX macros have
undelimited parameters, so users must use braces to
specify parameters of more than one token. LATEX’s
\newcommand does not allow declaring a macro with
delimited parameters. Brace pairs {} outside the
context of macro parameters (i.e. in the meaning
begingroup–endgroup) are not preferred in LATEX
markup language.

Writing the LATEX document often means cod-
ing the document. There are many nested LATEX
environments (a new syntactic concept in LATEX)
and {} braces. For example, Beamer documents are
more programming language than source text. The
author’s ideas (what’s intended to be displayed in
the Beamer presentation) disappear among the sur-
rounding code in source files.

There is no “standard LATEX markup language”
in the sense that if a program (other than TEX) un-
derstands this markup then it knows how to convert

Comparison of OpTEX with other formats: LATEX and ConTEXt

from or to this markup. We cannot suppose what
packages will be used, and they significantly affect
the tagging of the document.

OpTEX. The main credo is: the source files of the
document are created (typically) by humans, hu-
mans will read these sources and manipulate them.
Source files are intended primarily for humans, not
for machines. Machines must be programmed to re-
spect these principles.

This is why OpTEX tries to define a more
lightweight markup language. There are no highly
nested environments, there is a minimal number of
braces {}. Items in lists begin naturally with a *

character, titles are terminated by the end of the
line.

Many other relatively lightweight markup lan-
guages have been devised; Markdown, for example.
But we cannot have absolute control of “to PDF

processing” in Markdown. Maybe, an author can
initially prepare documents in Markdown, but the
result must be converted to a .tex format, which
could use the OpTEX format. A (human) typesetter
takes this .tex file and starts to program the ty-
pography of the document. It means that he or she
manipulates the .tex sources and adds more infor-
mation here and adds .tex macro files.

The .tex sources are “the heart” of the docu-
ment. They are what’s needed to archive documents
for future use (in the next edition, for example).
They can be processed for printing purposes to PDF

(by OpTEX) or they can be converted to other for-
mats (by other converters).

There is an OpTEX markup language standard
(OMLS) [16] which gives instructions for poten-
tial authors of converters from/to OpTEX format.
The standard specifies the syntax and semantics of
“known OpTEX tags”. Other tags can be ignored.
The OMLS covers tags that are used in typical tasks
when processing OpTEX documents.

ConTEXt. The markup language is somewhere be-
tween LATEX coding and OpTEX writing the docu-
ment. Tables, though, are created in a special way
not typical in TEX. They look like HTML code which
is far from a text intended for humans.

Hello world test

Create the following test file

\loggingall

\cslang % Czech hyphenation patterns

\fontfam[Adventor] % Unicode font family Adventor

Ahoj světe! % Hello world!

\bye

48 TUGboat, Volume 42 (2021), No. 1

and its counterparts in other two formats (LuaLATEX
and ConTEXt), i.e. loading the Unicode Adventor
family, selecting a language, and printing one sen-
tence. We count the number of lines in the .log

file when full tracing is activated by \loggingall

and the time spent when processing this document
without \loggingall (measured using the author’s
notebook). The following table summarizes the re-
sults:

OpTEX LuaLATEX ConTEXt

lines 1.8 K 3.6 M 231 K
time 0.5 s 1.0 s 1.1 s

We can see that LuaLATEX needs to do about
two thousand times more internal operations than
OpTEX to process this “Hello world” document.
LuaLATEX is slightly better than ConTEXt (although
ConTEXt was run with the --once option) in the
time measurement, because ConTEXt has an excep-
tionally large .fmt file and time is spent loading
and uncompressing this file. See the following table
which shows the size of .fmt files in the GNU/Linux
TEX Live distribution:

OpTEX LuaLATEX ConTEXt

.fmt size 750 KB 1.2 MB 11 MB

Note that OpTEX has a noticeably smaller for-
mat file than LuaLATEX although it implements not
only the comparable features of the LATEX kernel
but also a number of LATEX packages not included
in the kernel: xcolor, hyperref, url, listings,
biblatex, graphicx, geometry, amsmath, amsymb,
fontspec, unicode-math, cprotect, eqparbox,
tabularx, booktabs, keyval and more.

Why it is possible? OpTEX keeps its basic con-
cept “simplicity is power”.

Moreover, OpTEX does not create any auxiliary
file if it is not needed. When the example above was
processed, LATEX creates an unnecessary .aux file
and ConTEXt creates a .tuc file, but OpTEX creates
only .pdf and .log files.

When OpTEX needs an auxiliary file, then only
a .ref file is created where all needed information
is saved. We don’t need .toc, .lot, .lof, .nav,
.glo, .idx, .ind, .bbl and others that have been
used over the years.

Namespaces

LATEX. There is no user namespace. You cannot
tell users: “you can define and use an arbitrary con-
trol sequence with given naming scheme”. There is

Petr Oľsák

only the concept: “try it and maybe you will be
successful”. More precisely, the user can define an
arbitrary control sequence using \newcommand and
this macro ends with the error “control sequence de-
fined already” (in other words: “you are out of your
namespace”), or it is successfully defined.

LATEX packages commonly use internal names
containing the @ character. These names typically
begin with pkg@ where pkg is the name of the pack-
age. The expl3 language uses _pkg_ in the names
of control sequences too. This results in code where
we repeatedly see _pkg_, _pkg_, _pkg_ in practice,
despite various language features to attempt to re-
duce the need for the repetition. This reduces the
clarity of the code and reduces the concentration of
an eventual reader on the key topic of the code.

OpTEX. We can say to users: Your namespace
includes names with letters only. You can define
control sequences in this namespace and use them.
Moreover, some control sequences in your name-
space have pre-declared meanings (primitive, macro
from OpTEX, register or anything else). You can
use them. If you don’t know about the existence
of the meaning of a pre-declared control sequence
and you never use it with this meaning, then you
can re-define it without problems. For example,
\def\fi{finito} will work as you wish, if you never
use \fi in its primitive meaning.

How does it work? All primitive control se-
quences and internal macros in OpTEX have their
duplicates in the format _foo. For example, there
are control sequences \hbox and _hbox with the
same meaning. OpTEX macros use exclusively the
_foo form. This is the OpTEX namespace. Users
can utilize _foo sequences too without problems
in “read-only” mode and they can re-define such se-
quences when they know what they are doing.*

The packages for OpTEX have their own name-
space in the naming scheme _pkg_foo. But the

* Unfortunately, there is one exception to this princi-
ple of the user namespace: the control sequence \par is
hardwired in the TEX implementation. For example, it is
generated at each empty line. The OpTEX manual men-
tions this exception from the user namespace. I wrote
a patch to TEX, which enables to set any name to this
hardwired control sequence. Unfortunately, I sent this
patch after the deadline for TEX Live 2021, so we must
wait a while until it will be implemented in the TEX
engines. The patch is ready, documented, and tested
on my computer. When the patch is applied then this
footnote will be rendered obsolete, since there will be no
exceptions from the user namespace.

TUGboat, Volume 42 (2021), No. 1 49

package writer doesn’t have to write _pkg_ re-
peatedly in the internal macros because there is a
_namespace{pkg} declaration. If it is used then
the macro programmer can write \.foo, \.bar

in the code, and it is transformed to _pkg_foo,
_pkg_bar at the input processor level, when the
macro file is scanned.

Happy (Op)TEXing!

References

1. OpTEX web pages. petr.olsak.net/optex

2. P. Oľsák: OpTEX — A new generation of Plain
TEX. TUGboat 41:3, 2020, pp. 348–354.
tug.org/TUGboat/tb41-3/tb129olsak-optex.pdf

3. L. Lamport: LATEX: A document preparation
system. Reading, Mass.: Addison-Wesley, 1994.

4. OPmac web page. petr.olsak.net/opmac-e.html

5. P. Oľsák: OPmac: Macros for Plain TEX.
TUGboat 34:1, 2013, pp. 88–96.
tug.org/TUGboat/tb34-1/tb106olsak-opmac.pdf

6. OpTEX tricks.
petr.olsak.net/optex/optex-tricks.html

7. LATEX Project web pages.
https://www.latex-project.org/

8. F. Mittelbach et al.: The LATEX Companion.
Reading, Mass.: Addison-Wesley, 2004.

9. OpTEX manual.
petr.olsak.net/ftp/olsak/optex/optex-doc.pdf

10. P. Oľsák: TEX in a nutshell. 2020, 29 pp.
petr.olsak.net/ftp/olsak/optex/tex-nutshell.pdf

ctan.org/pkg/tex-nutshell

11. P. Oľsák: Typesetting Math with OpTEX.
petr.olsak.net/ftp/olsak/optex/optex-math.pdf

12. V. Eijkhout: TEX by Topic, 2007.
ctan.org/pkg/texbytopic

13. D. Knuth: The TEXbook. Reading, Mass.:
Addison-Wesley, 1984.

14. LuaTEX reference manual.
www.pragma-ade.com/general/manuals/luatex.pdf

15. Font catalog generated by OpTEX.
petr.olsak.net/ftp/olsak/optex/op-catalog.pdf

16. OpTEX markup language standard (OMLS).
petr.olsak.net/ftp/olsak/optex/omls.pdf

� Petr Oľsák
Czech Technical University
in Prague
https://petr.olsak.net

Comparison of OpTEX with other formats: LATEX and ConTEXt

